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Abstract—A short-time analytical solution is constructed by using a new technique which assumes fictitious
initial temperatures in some fictitious extensions of the actual regions. Later, this short-time solution is
compared with the numerical solution obtained by the finite difference scheme in which the space grid
points change with the freezing front position. Even a small error in the initial values of the solid temperature
and freezing front position, which are required for starting the numerical scheme, can, for a short time,
give rise to considerable error in the freezing front position. However, the analytical and numerical solutions
were found to be in close agreement if the numerical scheme is started with the analytical values of the
solid temperature and freezing front.

1. INTRODUCTION

SOLIDIFICATION problems belong to a more general
class of problems, commonly known as moving
boundary problems, and considerable information on
these problems is available in refs. {1-4]. The melting
problem is mathematically analogous to the solidi-
fication problem.

Exact similarity solution by Neumann [5] has
recently motivated some more exact solutions [6, 7}
but this approach is not of much help in the present
problem. Tao [8, 9] has obtained some analytical solu-
tions pertaining to one-dimensional solidification in a
semi-infinite mold. The method of solution requires
the calculations of the derivatives of a function of
a function and although, in principle, analytical
expressions of these derivatives can be written down,
in practice only a few coefficients can be determined
so that only short-time solutions can in general be
obtained. Approximate solutions [10] and per-
turbation solutions [11~14] are two other important
classes of solutions which have been attempted mostly
for one-dimensional solidification problems. In the
one-dimensional spherical solidification problems
studied in refs. [11, 12], the melt is considered at the
melting temperature. At the fixed boundary, a con-
stant temperature is prescribed and the perturbation
solutions are valid only for small Stefan numbers. It
has been observed by Schulze et al. {15] that approxi-
mate solutions are generally not accurate for short
times.

In ref. [17], Boley developed an embedding tech-
nique and studied short-time analytical solutions of
solidification problems. Grimado and Boley [18]
obtained a short-time solution of the ablation of a
sphere while Lee and Boley [19] studied the melting
of an infinite solid with a spherical cavity for boundary

conditions of the first kind. Many more applications
of Boley’s technique can be found in ref. [20] and its
comparison with the present technique can be found
in a recent work by Gupta [21].

Although the results are presented here for bound-
ary conditions of the second kind, the present method
of solution is valid for boundary conditions of all
three kinds [22] which could be time dependent. The
melt could be superheated and the physical par-
ameters may have any value. With some minor
changes the results for inward spherical solidification
can be used for outward solidification and vice versa.
The short-time solution of the heat conduction prob-
lem can also be studied by the present method. For
some parameter values, a considerable solidified
thickness can be obtained as shown in Fig. 1.

For numerical work, the Murray and Landis
scheme [23] has been chosen because of the sim-
plicity of its execution. Besides, this scheme lends
itself to examining the effect of accuracy of the initial
values which are required for starting the numerical
scheme.

2. PROBLEM FORMULATION

Consider a superheated melt contained in a spheri-
cal mold occupying the region 0 € R < 1. The tem-
perature of this melt at time ¢ = 0 is a known quantity
6{"(R). The mold is cooled by prescribing known flux
(1) on the surface R = 1 of the sphere. If at 1 =0,
f{9(1) # T,, then the time ¢, t, > 0, at which the
surface R = 1 will attain the temperature T, can be
calculated by solving a pure heat conduction problem
as in ref. [24]. Without any loss of generality it can be
assumed that the temperature of the meltat r = ¢, is
a known quantity 8{"(R) such that §{"(1) = T,,. Once
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NOMENCLATURE
a dimensionless constant, kt,./ R} T. melting temperature [°C]
A, coefficients in equation (22) Vv dimensionless time, 2(asy)"/?
¢ specific heat [J kg~ '°C~] X(y) dimensionless freezing front,
erf( ) error function dimensionless distance from the
erfc( ) complimentary error function origin to the freezing front
H,, H, H, terms defined by equations (13), X)) dimensionless freezing front, X(y)
(18) and (19), respectively y dimensionless time, (£ —t,)/tm-
k thermal diffusivity [m?s~']
K therrfl?locoP ,d u_c ?Vlty Greek symbols
Dm= °C™ s ] « dimensionless constant, (ks/k;)"?
{ latent heat of fusion [J kg='] . . > NOSIL
- . S B dimensionless constant, K; /Ky
p dummy variable of integration in " A
. #O(R)  melt temperature at ¢ = 0 [°C]
equations (11), (12), and (14)-(17) Dy . . .
A ) 2o 4 #{"(R) dimensionless temperature in
o prescribed flux at 7 =0 [Jm~*s~'] .
. . . . equation (2)
o) dimensionless flux in equation (6), @ X . .
0¥(R) dimensionless temperature in
flux* Ry/Ks T, .
. . . equation (11)
0, coefficients in equation (23) ) D a4 . .
. . 0", 05Y dimensionless temperatures in
r radial coordinate [m] .
. . . equation (12)
R dimensionless radius, /R, . .
. A dimensionless constant, //(¢sT,,)
R, radius of the sphere [m] density [kg m~’]
t time [s] yIxs ’
tn time at which solidification starts at
R=1][s] Subscripts
T dimensionless temperature, L liquid
temperature/7T,, S solid.
0.4 T T T T

————— Analytical solution
Numerical solution

X(v)

FI1G. 1. Freezing front X(¥) for copper vs V for different

fluxes. 8"(R) = 1.2—0.2R?; a5 = 0.3, 1 = 0.423, f = 0.503

and & = 1.50. For graphs 1,2, 3and 4, Q(V) = —0.5, —0.75,
—1.0 and —1.25, respectively.

the surface temperature becomes T, and the cooling
continues, the solid-liquid interface will progress
towards the interior till the whole of the melt is sol-
idified. The emphasis in this paper is on finding the

growth of the freezing front and temperature profiles
in the solid and liquid regions.

The following dimensionless differential equations,
initial conditions, boundary and interface conditions
are to be satisfied.

Liquid region

202 [% + (l—ps/pL)% aa%]
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T (R, V)Lo =0{"(R) @
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Re
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Solid-liquid interface conditions

T.(R, V) =1 (M
R=X(V)
Ts(R, V) =1 ®
R=X(V)
OTs _ 0T _ux
oR AR § |rexy, V OV
X)) =1 (10)
V=0

In the above formulation, the melting temperature
T, is unique. Thermal properties are taken to be con-
stants in any one phase but different phases can have
different thermal properties. In equation (1) the den-
sities of solid and liquid are different and so there is
natural convection in the liquid. For the present work
it will be assumed that the difference in the densities
of the two phases is insignificant and so the convective
term in equation (1) will be dropped in what follows.

3. SOLUTION

The solution of equation (1) with pg = p, and the
solution of equation (5) can be written as

1
o
TL(R V)= W[ﬁ pH (R, p, V)0{"(p)dp

+ J le (Ryp’ V)9§_2)(p) dP:l;
1

0<SR<ow, V>0 (11)

1 1
T(R, V) = WI:L pexp {—(R—p)*/V?}
><6’(s”(p)dp+Jl pexp{—(R—p)*/V?}

x9g2>(p)dp], 0<R<o, V>0 (12)

HI(R’p’ V) = €Xp {—az(R—p)2/V2}

—exp {—o*(R+p)*/V?}. (13)

It can be easily checked that T satisfies equations (1),
(2) and (4) and Ty satisfies equation (5). 8{"(R) is
known and 6{?(R) is the unknown initial temperature
in the fictitious extension 1 < R < oo of the actual
melt region. 0{"(R) and 9(P(R) are unknown fic-
titious initial temperatures in the solid regions
0<R<1 and 1< R< o, respectively. Math-
ematically there are four unknowns, namely, 8{?(R),
6" (R), 85?(R) and X (V) and four conditions (6)—(9)
to be satisfied. On substituting equations (11) and
(12) in conditions (6)—(9) and making some suitable
substitutions, the following equations are obtained :
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0
ﬁ/yp(l —Vp)exp (—p*)0§"(1—Vp)dp

+ f 7 (1= Vp)exp (=p2)0L(1— Vp) dp

1/2

n
=-—rem 14

w(X — 1)V
_[ H, (X, p)0{" (X —Vp/a)dp

e X(V)

a(1+X)V

—L H,(X,p)0{P (Vpla—X)dp

(t2)

+ f H,(X,p)0> (X — Vpla)dp
(X — 1)V

- _[ Hy(X, p)0? (Vpja—X)dp = —=n'*X(V)
XV

(15)

X— v
J Hy(X,p)o{"(X—Vp)dp

X/v

+ '[ H;(X,p)0{(X—Vp)dp
(X—1)/v

= —2'2X(V) (16)

-y
J PH3(X, p)0s"(X—Vp)dp

2004

—w
+
(X - 1)V

a(X — 1)V
—fa U PH, (X, p)6{°(X— Vp/a)dp

Hy(X,p)0§? (X —Vp)dp

Xa/V
(a(1+ X))V
- pH, (X, p)6i"(— X+ Vp/a) dp
Jaxv
+ PH, (X, p)bi (X — Vplo)dp
Ja(x—1yv
"oo
- PH, (X, p)0? (— X+ Vpla)dp
Ja(x— /v
dx
=n'2V(1-B)2+r"AX-= (17)
av
Hy(X, p) = (X—Vp/a)exp (—p*) (18)
Hy(X,p) = (X—Vp)exp (—p?). (19)

The following series expansions for the known and
unknown functions will be assumed :

© (R_l)n 6"0,(1)
01('1) R = )
( ) ?IZ:O ]ﬂ aR" R=1
0<R<1; i=LS (20)
© (R__l)n anol(Z)
01('2) R = s
&) ,.g'o n OR" |ry
I<R<ow; i=L,S (1)
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X¥V)=14+Y 4,V", V>0
1

n=

22

o) =3 Q.0 V=0 (23)
n=0

In order to obtain the solution, series expansions (20)—
(23) are substituted in equations (14)-(17) and limits
V — 0+ of these equations are taken. Four equations
in four unknowns are obtained which when solved
give a unique solution. Equations (14)—(17) are then
differentiated once with respect to ¥ and limits ¥ —
0+ of the differentiated equations are taken. Once
again four equations in four unknowns are obtained
which when solved give a unique solution. This pro-
cess of higher order differentiations and limits V' —
0+ can be continued further. Some of the coefficients
of the moving boundary are given below :

A, =0 4)
6P (=1, 6PN =1 (25
6Ny =1, 6P(1) =1 (26)
065" o6
414, = —— —f— 27
T N 3 M
oos» 007
3R |._. = R R=1_Q0 (28)
o0» o0
3R |acr = OR |ec @)
220
12 — 2 L
6n'?lad; = n'*aQ+ 8 R |,
69(1)
2 L
+2p(1+24,a%) R |, (30)
620£2) 6299) s 98)
GR |pot =~ OR [p, TSGR
(3D
629g2) 629(51) U
TR o, " R R=1—27r g, (32)
220 d205
R |t aRT |, = T4Q1+242). (33)

The coefficients 4, and A were also calculated
for the numerical work. Although, in principle, other
coefficients, A4, A,, etc. can also be determined, the
algebra goes on becoming lengthier. Along with the
unknowns of the moving boundary, the unknowns in
the temperature solutions are also determined. The
temperature Ty (R, V) in the melt is given below. Series
expansions (20) and (21) are substituted in equations
(11) and (12), respectively, and term by term inte-
gration is done. For small values of V" and [R— 1] the
temperature 7; (R, V) can be obtained as follows :

S. C. Gurta

T(R, V)= %erfc {a(R—1)/V}

200 (R—1)% 626"
x{1+(R—1)aR =1
% 200
~ 2n""Ra) {“’QR_I) R |o.,

226"
+R(R- 1)6—1;2

}exp {—a*(R-1)*/V?}

+ 32— erfc {a(R—1)/V}]

062 (R=1) 36
X{H(R_”aR e T2 R e
1% 002
+—(2n,,2Ra){l+(2R—l) A
20(2)
+R(R-1)—s- exp {—a2(R—1)*/V?}
OR* |r=1

+ terms of the type (R— 1)"V"
wherem+n>2,R>0,V>0. (34)

For numerical work, terms of the type (R—1)"BV"
where m+n = 4 were also calculated in equation (34).
In calculating the above temperature wherever the
limit of integration is R/V it is taken as oo and it is
justified as the integrals are error function integrals
[25]. Without making this assumption the integrals
can also be evaluated but the temperature expression
becomes very lengthy. 7, is physically meaningful
only for 0 € R < X(¥). In order to obtain the tem-
perature Tg(R, V), put o =1 in equation (34) and
replace the subscript L by the subscript S everywhere.

Equations (25), (26) and (28) can be written purely
from physical considerations also. For V « 1, the
behaviour of the moving boundary is in agreement
with the earlier findings [26] which are valid irre-
spective of the geometry. The moving boundary and
temperature distributions in the Neumann problem
[5] can be obtained exactly if a formulation similar to
the one presented above with appropriate changes is
done. Some of the steps in the method of solution can
be rigorously justified by giving the arguments similar
to those given in ref. [21].

3.1. Heat conduction without phase change

The temperature of the superheated melt occupying
the radially symmetric region 0 < R < 1 which is
cooled at R =1 is also given by equation (11). The
short-time temperature solution in this case is still
given by equation (34) provided 6{? is determined by
the prescribed boundary condition.

3.2. Solidification in an infinite medium with spherical
cavity

The formulation given in equations (1)—(10) can be
used for the spherical cavity problem also after
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making some changes. For example, the region oc-
cupied by the melt at t =0 will now be 1 < R <
oo and equation (4) is not required. T for the cavity
problem is still given by equation (11) but H, in
equation (13) will now contain only the first term.
8» will now be a known function and 6{" becomes
an unknown function. The freezing front and
temperatures can be determined by following the
method given earlier.

4. NUMERICAL SOLUTION AND DISCUSSION

The manner in which the Murray and Landis [23]
numerical scheme was executed in the present work is
being discussed briefly as some discretion can be used
in its execution. Thirteen and twenty one space grid
points were used in the solid and liquid regions,
respectively. At the first time step Ay = 0.001 in the
numerical scheme, the values of the freezing front
and the temperatures at the space grid points in the
solidified thickness, were taken from the analytical
solution and these values will be referred to as starting
values in the following. Liquid temperatures at time
Ay were calculated using the implicit scheme. At time
2Ay, the freezing front was calculated from the heat
balance equation (9) in which the derivatives of the
temperatures were calculated at the previous time step
using three point formulas incorporating the isotherm
conditions. Once the freezing front at time 2Ay is
known, the temperatures 7; and T at the new space
grid points and time 2Ay can be calculated using the
implicit scheme. For all subsequent time steps, the
above procedure was repeated. The analytical solu-
tion was used in the numerical scheme only at the
first time step. No significant change in the numerical
results was observed when the number of spacial grid
points in the solid and liquid regions were doubled or
the time step was halved.

A large number of numerical experiments were car-
ried out for different parameters and different fluxes,
etc. and the following was observed. If for given par-
ameter values, the coefficients in the moving boundary
are systematically decreasing in absolute value, then
by calculating |4, V" for a given V, where 4, is the
last coefficient calculated in the moving boundary,
one can easily check whether it makes any significant

difference in Y 4,,7™ or not. If it does not, then the

m=72

analytical solution is valid at least for this particular
value of V. In fact the analytical solution was in
general found to be valid for values of ¥ larger than
this particular value.

From Table 1, it is clear that for a short time, even
a small error in the starting values can make
considerable error in the freezing front position. As
the solidified thickness increases, this error gradually
decreases. In Fig. 1, the solidified thickness for copper
is reported. Similar types of results were obtained for
other metals such as aluminium. For small values of
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Table 1. Effect of accuracy of the starting values on the
freezing front in the numerical solution. Data as in Fig. 1

Solidified Percentage
ow) V thickness error
0.00196t 0.0
0.1039 0.00285% 454
0.00513§ 161.7
0.00760 0.0
0.202 0.00841 10.52
0.01063 39.8
-0.5
0.01824 0.0
0.307 0.01901 4.16
0.02119 16.17
0.05860 0.0
0.531 0.05947 1.48
0.06167 52

+Numerical solution started with exact analytical values.

}Starting solid temperature = analytical temperature —
0.00001 and freezing front = X(¥)~+0.00001.

§Starting solid temperature = analytical temperature—
0.00004 and freezing front = X(¥)+ 0.00002.

V and |R— 1|, there was good agreement between the
temperatures calculated from equation (34) and the
numerical scheme.
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SOLUTIONS ANALYTIQUE ET NUMERIQUE D'UN PROBLEME DE SOLIDIFICATION
PENETRANTE, A SYMETRIE RADIALE DANS UNE GEOMETRIE SPHERIQUE

Résumé—Une solution analytique rapide est obtenue en utilisant une technique nouvelle qui suppose des
températures initiales fictives dans des extensions fictives des régions réelles. Ultérieurement, cette solution
est comparée avec la solution numérique obtenue par différences finies dans laquelle les points de la grille
spatiale changent avec la position du front de solidification. Une petite erreur dans les valeurs initiales de
la température du solide et dans la position du front de solidification, données nécessaires pour initialiser
le schéma numérique, peut conduire dans un temps court 4 une erreur considérable sur la position du front
de solidification. Néanmoins les solutions analytique et numérique sont en bon accord si le schéma
numérique est initialisé avec les valeurs analytiques de la température du solide et du front de solidification.

ANALYTISCHE UND NUMERISCHE LOSUNGEN RADIALSYMMETRISCHER
ERSTARRUNGSERSCHEINUNGEN IM INNEREN VON KUGELFORMIGEN
GEOMETRIEN

Zusammenfassung—Man erhilt eine analytische Kurzzeitlésung mit Hilfe einer neuen Technik, bei der
fiktive Anfangstemperaturen in fiktiven Bereichen der betrachteten Regionen angenommen werden. Die
Kurzzeitldsung wird spiter mit der numerischen Losung verglichen, die man durch das Finite-Differenzen-
Schema erhilt, und bei der sich die Raumlage der Gitterpunkte mit der Position der Erstarrungs-
front dndert. Schon geringfiigige Fehler bei den fiir den Start des numerischen Verfahrens notwendigen
Anfangswerten fiir die Festkorpertemperatur und Lage der Erstarrungsfront konnen fiir kurze Zeiten
den Fehler bei der Ermittlung der Lage der Erstarrungsfront erheblich anwachsen lassen. Die ana-
Iytische und die numerische Lsung stimmen jedoch gut miteinander {iberein, wenn als Startwerte fiir
das numerische Verfahren die analytischen Werte der Festkorpertemperatur und der Erstarrungsfront
verwendet werden.

AHAJTUTUYECKOE U YUCJIIEHHOE PEIMEHHUE PAJTUMAJIBHO-CUMMETPUYHbBIX
BHYTPEHHUX 3AJ0AY 3ATBEPAEBAHHWA IJ151 COEPUYECKHUX TEI

AmsoTauus—C NOMOIUBIO HOBOTO METO/IA, NPEANoaraouero GHKTHBHbIE TEMIIEPATYPhl HA HEKOTOPBIX
(UKTHBHBIX y4acTKaX peasibHbIX 00JacTei, MOCTPOCHO AaHAJIMTHYECKOE PELICHHE IUIA MAaJIbIX BPEMEH.
Manee npoBeIEHO CPABHEHHE PELIEHHA C YUCIIEHHBIM PEILICHHEM, IOYHEHHLIM ¢ TPHMEHEHHEM KOHEUHO-
Pa3sHOCTHOM CXeMBbl, POCTPAHCTBEHHAA CeTKa KOTOPOH M3MEHAETCS C M3MEHEHHEM IOJOXEHHs QpoHTa
3aTBepleBaHus. [IpH YHCICHHBIX pacyeTax Aaxe HeOONblIHE MOTPENIHOCTH B HAYANbHBIX 3HAYECHHAX
TeMIIEPATYPBI U NOJIOKEHAA PPOHTA 3aTBEpAEBaHAS MOTYT Ha MaJIbIX BpEMEHAX NPHBECTH K 3HAYHTEIb-
HeIM oMOKaM. OAHAKO CPaBHEHHE MOKA3aJI0, YTO AHAJINTHYECKOE W YHCIICHHOE PEILCHHS XOPOLIO COT-
JIACYIOTCH, €CTIW B YHCJICHHBIX PAcUeTaX MCTIONB3YIOTCH HaYaIbLHBIC 3HAYEHHA B AHAJIMTHYECKOM BHAE AN
TeMnepaTyps! TBEPAOTO Tea H PPoHTa 3aTeeplcBaHHs.



