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Ah&met-A short-time analytical solution is constructed by using a new technique which assumes fictitious 
initial temperatures in some fictitious extensions of the actual regions. Later, this short-time solution is 
compared with the numerical solution obtained by the finite difference scheme in which the space grid 
points change with the freezing front position. Even a small error in the initial values of the solid temperature 
and freezing front position, which are required for starting the numerical scheme, can, for a short time, 
give rise to considerable error in the freezing front position. However, the analytical and numerical solutions 
were found to be in close agreement if the numerical scheme is started with the analytical values of the 

solid temperature and freezing front. 

1. INTRODUCTION 

SOLIDIFICATION problems belong to a more general 
class of problems, commonly known as moving 
boundary problems, and considerable info~ation on 
these problems is available in refs. [l-4]. The melting 
problem is mathematically analogous to the solidi- 
fication problem. 

Exact similarity solution by Neumann [5] has 
recently motivated some more exact solutions [6, 7J 
but this approach is not of much help in the present 
problem. Tao [8,9] has obtained some analytical solu- 
tions pertaining to one-dimensional solidification in a 
semi-infinite mold. The method of solution requires 
the calculations of the derivatives of a function of 
a function and although, in principle, analytical 
expressions of these derivatives can be written down, 
in practice only a few coefficients can be determined 
so that only short-time solutions can in general be 
obtained. Approximate solutions [lo] and per- 
turbation solutions [ll-141 are two other important 
classes of solutions which have been attempted mostly 
for one-dimensional solidification problems. In the 
one-dimensional spherical solidification problems 
studied in refs. [l 1, 121, the melt is considered at the 
melting temperature. At the fixed boundary, a con- 
stant temperature is prescribed and the perturbation 
solutions are valid only for small Stefan numbers. It 
has been observed by Schulze et al. [15] that approxi- 
mate solutions are generally not accurate for short 
times. 

In ref. [17], Boley developed an embedding tech- 
nique and studied short-time analytical solutions of 
solidification problems. Grimado and Boley [18] 
obtained a short-time solution of the ablation of a 
sphere while Lee and Boley [19] studied the melting 
of an infinite solid with a spherical cavity for boundary 

conditions of the first kind. Many more applications 
of Boley’s technique can be found in ref. [20] and its 
comparison with the present technique can be found 
in a recent work by Gupta [21]. 

Although the results are presented here for bound- 
ary conditions of the second kind, the present method 
of solution is valid for boundary conditions of all 
three kinds [22] which could be time dependent. The 
melt could be superheated and the physical par- 
ameters may have any value. With some minor 
changes the results for inward spherical solidification 
can be used for outward solidification and vice versa. 
The short-time solution of the heat conduction prob- 
lem can also be studied by the present method. For 
some parameter values, a considerable solidified 
thickness can be obtained as shown in Fig. 1. 

For numerical work, the Murray and Landis 
scheme f23] has been chosen because of the sim- 
plicity of its execution. Besides, this scheme lends 
itself to examining the effect of accuracy of the initial 
values which are required for starting the numerical 
scheme. 

2. PROBLEM FORMULATION 

Consider a superheated melt contained in a spheri- 
cal mold occupying the region 0 < R < 1. The tem- 
perature of this melt at time t = 0 is a known quantity 
~~‘)(~). The mold is cooled by prescribing known flux 
Q(t) on the surface R = 1 of the sphere. If at t = 0, 
f?i’)(l) # T,,, then the time t,,,, t, > 0, at which the 
surface R = 1 will attain the temperature T,,, can be 
calculated by solving a pure heat conduction problem 
as in ref. [24]. Without any loss of generality it can be 
assumed that the temperature of the melt at t = tm is 
a known quantity f!&‘)(R) such that &?( 1) = T,. Once 
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NOMENCLATURE 

a dimensionless constant, kt,/Rt 

A” coefficients in equation (22) 
c specific heat [J kg-‘“C-‘1 

erf( ) error function 
erfc( ) complimentary error function 
H,, H,, H, terms defined by equations (13), 

(18) and (19), respectively 
k thermal diffusivity [m’ s-‘1 

Till melting temperature [“Cl 
V dimensionless time, 2(asy)“’ 

2((Y) dimensionless freezing front, 
dimensionless distance from the 
origin to the freezing front 

XV? dimensionless freezing front, 2(Y) 

Y dimensionless time, (t - t,,,)/t,,,. 

K 

1 

P 

0(t) 

Q(v> 

Qll 

rR 
RO 
t 
tin 

T 

thermal conductivity 

[J m --I “C’ s-'I 
latent heat of fusion [J kg- ‘1 
dummy variable of integration in 
equations (1 l), (12), and (14~( 17) 
prescribed flux at t = 0 [J me2 S- ‘1 

dimensionless flux in equation (6), 
flux. Ro/KsTm 
coefficients in equation (23) 
radial coordinate [m] 
dimensionless radius, r/R0 

radius of the sphere [m] 
time [s] 
time at which solidification starts at 
R = 1 [s] 
dimensionless temperature, 
temperature/T, 

Greek symbols 
CI dimensionless constant, (k,/k,) “’ 

B dimensionless constant, KLjKs 

&’ (R) melt temperature at t = 0 [“Cl 

@f)(R) dimensionless temperature in 
equation (2) 

@p)(R) dimensionless temperature in 
equation (11) 

0&‘), Op) dimensionless temperatures in 
equation (12) 

1 dimensionless constant, Z/(csT,,,) 

P density [kg m-‘1. 

Subscripts 
L liquid 
S solid. 

0.41 I I I I a 
----- Analytical solution 

- Numerical solution 

0.5 

0.6 

;: 
;; 0.7 

0.8 

0.9 

1.0 
0 0.2 0.1 0.6 0.9 1.0 

growth of the freezing front and temperature profiles 
in the solid and liquid regions. 

The following dimensionless differential equations, 
initial conditions, boundary and interface conditions 
are to be satisfied. 

Liquid region 

2u2 1 
Va2(RTL), O<R<X(V), V>O (1) =xr 

T,(R V = Ql”(R) (2) 
“=0 

BP’(R) = 1 (3) 
R=l 

V 
aTI_ 

FIG. 1. Freezing front X(V) for copper vs V for different aR R=O =O. 

fluxes. BP)(R) = 1.2-0.2R’; as = 0.3, A = 0.423, B = 0.503 
anda = l.SO.Forgraphs1,2,3and4,Q(V) = -0.5, -0.75, 

- 1 .O and - 1.25, respectively. 
Solid region 

(4) 

aTs V a2(RTs) 

the surface temperature becomes T,,, and the cooling 
z&7=2 aR2 3 X(V)<R< 1, V>O (5) 

continues, the solid-liquid interface will progress 
towards the interior till the whole of the melt is sol- aTs 

= Q(v>. (6) 
idified. The emphasis in this paper is on finding the aR R=, 
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Solid-liquid interface conditions 

(7) 

(8) 

X(V) = 1. (10) 
“=0 

In the above formulation, the melting temperature 
T,,, is unique. Thermal properties are taken to be con- 
stants in any one phase but different phases can have 
different thermal properties. In equation (1) the den- 
sities of solid and liquid are different and so there is 
natural convection in the liquid. For the present work 
it will be assumed that the difference in the densities 
of the two phases is insignificant and so the convective 
term in equation (1) will be dropped in what follows. 

3. SOLUTION 

The solution of equation (1) with ps = pL and the 
solution of equation (5) can be written as 

co 

+ PHI@’ P 2 , V)Wp)dp 

O<R<co, V>O 

Ts(R VI = Av [s I 

pexp{-(R-~)~/V~) 
cl 

s 02 

x @‘)(p)dp+ pexp {-(R-_p)‘/V2) 
I 

x@‘)@)dp, O<R<co, V>O 1 
H,(R,p, V) = exp { -d(R-p)*/V*} 

-exp { -a*(R+p)‘/V*}. 

(11) 

(12) 

(13) 

It can be easily checked that TL satisfies equations (l), 
(2) and (4) and T, satisfies equation (5). f?i’)(R) is 
known and @i*)(R) is the unknown initial temperature 
in the fictitious extension 1 < R < 00 of the actual 
melt region. @‘j(R) and e&‘)(R) are unknown fic- 
titious initial temperatures in the solid regions 
0 ,< R < 1 and 1 < R < 00, respectively. Math- 
ematically there are four unknowns, namely, et*)(R), 
0$‘)(R), 0&*)(R) and X(v) and four conditions (6)-(g) 
to be satisfied. On substituting equations (11) and 
(12) in conditions (6t(9) and making some suitable 
substitutions, the following equations are obtained : 

s 0 

p(l- Vp)exp (-p*)O&‘)(l- Vp)dp 
l/V 

-co 
+ ~(1-Vp)exp(-p*)~~*‘(1-Vp)dp 

= -q VQ(V) (14) 

e(X- l),V s ff2K P)@." W- VP/~ dp 
.X( v 

- ff,(~,p)w(Vpb-X)dp 

s -m 

+ H2(X~)ei2)(X- VP/~) dp 
a(X- I),” 

- H,(X,p)e~*‘(vp/pla-X)dp = -7+*X(v) 

s (X- ‘l/V 

fb(Xp)w(Jf- Vp)dp 
x/v 

s -02 

+ H3 wv~*w VP) dp 
v- 1)/V 

= -_x “2X(V) 

s G- ‘W 

Pfh (x Pw(x- VP) dp 
X/V 

s -cc 

+ ffS(X P)ef)w VP) dp 
(X- l)/V ' 

or(X- I),” 

-U B [s P~2(XP)%!‘(~- VP/~) dp 
xcr, ” 

- pff2(~~p)~~~~(-~+ VP/4 dp 

+ Pff*(X p)ez (X- VP/4 dp 

- Pff2m)w( - x+ VP/4 dp 

= n”*V(1-/?/2+n”*lX$ 

H2(X P) = (X- VP/a) exp (-p*) 

ff,(K P) = (X- VP) exp (-P’). 

(15) 

(16) 

(17) 

(18) 

(19) 

The following series expansions for the known and 
unknown functions will be assumed : 

O<R<l; i=L,S (20) 

e;*)(R) = f 7 !$ = , 
"=O R I 

l<R<co; i = L,S (21) 
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X(V)= 1+ f A,V”, v>o (22) 
PI= I 

Q(V) = 2 QnVn, v> 0. (23) 
n=O 

In order to obtain the solution, series expansions (2Ok 
(23) are substituted in equations (14)-(17) and limits 
V + 0 + of these equations are taken. Four equations 
in four unknowns are obtained which when solved 
give a unique solution. Equations (14~(17) are then 
differentiated once with respect to V and limits V + 

0+ of the differentiated equations are taken. Once 
again four equations in four unknowns are obtained 
which when solved give a unique solution. This pro- 
cess of higher order differentiations and limits V--t 
0 + can be continued further. Some of the coefficients 
of the moving boundary are given below : 

A, =0 (24) 

S[‘)(l) = 1, cl*)(l) = 1 (25) 

eg’)(l) = 1, e&*)(l) = 1 (26) 

(29) 

= Qo (28) 

a*ep 
67c”*lctA, = z”‘crQ, +BaR2 

R=l 

aep 
+V(1+2A2”2)aR R=, (30) 

a*ep a*ep aep 

aR* R=,= aR* R=, 
-4(l+2A2cr2)x R=, 

(31) 

!%I.=, -$I.=, = 27r”*Q, (32) 

= -4&,(1+2A2). (33) 

The coefficients A., and A, were also calculated 
for the numerical work. Although, in principle, other 
coefficients, As, A,, etc. can also be determined, the 
algebra goes on becoming lengthier. Along with the 
unknowns of the moving boundary, the unknowns in 
the temperature solutions are also determined. The 
temperature T,(R, V) in the melt is given below. Series 
expansions (20) and (21) are substituted in equations 
(11) and (12), respectively, and term by term inte- 
gration is done. For small values of V and IR- I] the 
temperature T,(R, V) can be obtained as follows : 

T,(R, V) = : erfc {cc(R - 1)/V) 

aep 
l+(R-l)dRR=,+ 

V 

- (2z”*Rt() 
1+(2R-l)$f _ 

R-1 

exp { -cr*(R- 1)*/V’) 

+ j[2- erfc {cc(R- 1)/V}] 

aep 
1+(R-1)3FR_,+ 

V 

+ (2n”*Ra) 

aep 
1+(2R-1)~ R=, 

a*ep 
+W-1)~ R=, 

I I 
exp { -a*(R- 1)*/V’) 

+ terms of the type (R - l)mVn 

wheremfn > 2, R > 0, V > 0. (34) 

For numerical work, terms of the type (R- l)mBV” 

where m + n = 4 were also calculated in equation (34). 
In calculating the above temperature wherever the 
limit of integration is R/V it is taken as 00 and it is 
justified as the integrals are error function integrals 
[25]. Without making this assumption the integrals 
can also be evaluated but the temperature expression 
becomes very lengthy. T,_ is physically meaningful 
only for 0 ,< R < X(V). In order to obtain the tem- 
perature T,(R, V), put u = 1 in equation (34) and 
replace the subscript L by the subscript S everywhere. 

Equations (25), (26) and (28) can be written purely 
from physical considerations also. For V c 1, the 
behaviour of the moving boundary is in agreement 
with the earlier findings [26] which are valid irre- 
spective of the geometry. The moving boundary and 
temperature distributions in the Neumann problem 
[5] can be obtained exactly if a formulation similar to 
the one presented above with appropriate changes is 
done. Some of the steps in the method of solution can 
be rigorously justified by giving the arguments similar 
to those given in ref. [21]. 

3.1. Heat conduction without phase change 
The temperature of the superheated melt occupying 

the radially symmetric region 0 < R < 1 which is 
cooled at R = 1 is also given by equation (11). The 
short-time temperature solution in this case is still 
given by equation (34) provided 0i2) is determined by 
the prescribed boundary condition. 

3.2. Solidzjication in an infinite medium with spherical 
cavity 

The formulation given in equations (1~( 10) can be 
used for the spherical cavity problem also after 
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making some changes. For example, the region oc- 
cupied by the melt at t = 0 will now be 1 < R < 
co and equation (4) is not required. TL for the cavity 
problem is still given by equation (11) but H, in 
equation (13) will now contain only the first term. 
e[‘) will now be a known function and Qi’) becomes 
an unknown function. The freezing front and 
temperatures can be determined by following the 
method given earlier. 

4. NUMERICAL SOLUTION AND DISCUSSION 

The manner in which the Murray and Landis [23] 
numerical scheme was executed in the present work is 

being discussed briefly as some discretion can be used 
in its execution. Thirteen and twenty one space grid 
points were used in the solid and liquid regions, 
respectively. At the first time step Ay = 0.001 in the 
numerical scheme, the values of the freezing front 
and the temperatures at the space grid points in the 

solidified thickness, were taken from the analytical 
solution and these values will be referred to as starting 
values in the following. Liquid temperatures at time 
Ay were calculated using the implicit scheme. At time 
2Ay, the freezing front was calculated from the heat 
balance equation (9) in which the derivatives of the 
temperatures were calculated at the previous time step 
using three point formulas incorporating the isotherm 
conditions. Once the freezing front at time 2Ay is 
known, the temperatures T,_ and T, at the new space 
grid points and time 2Ay can be calculated using the 
implicit scheme. For all subsequent time steps, the 
above procedure was repeated. The analytical solu- 
tion was used in the numerical scheme only at the 
first time step. No significant change in the numerical 
results was observed when the number of spatial grid 
points in the solid and liquid regions were doubled or 
the time step was halved. 

A large number of numerical experiments were car- 
ried out for different parameters and different fluxes, 
etc. and the following was observed. If for given par- 
ameter values, the coefficients in the moving boundary 
are systematically decreasing in absolute value, then 
by calculating ]A,V”] for a given V, where A, is the 
last coefficient calculated in the moving boundary, 
one can easily check whether it makes any significant 

difference in i A,V” or not. If it does not, then the 
m=2 

analytical solution is valid at least for this particular 
value of V. In fact the analytical solution was in 
general found to be valid for values of V larger than 
this particular value. 

From Table 1, it is clear that for a short time, even 
a small error in the starting values can make 
considerable error in the freezing front position. As 
the solidified thickness increases, this error gradually 
decreases. In Fig. 1, the solidified thickness for copper 
is reported. Similar types of results were obtained for 
other metals such as aluminium. For small values of 

Table 1. Effect of accuracy of the starting values on the 
freezing front in the numerical solution. Data as in Fig. 1 

Solidified Percentage 
Q(v) V thickness error 

0.00196t 0.0 
0.1039 0.00285$ 45.4 

0.00513g 161.7 

0.00760 0.0 
0.202 0.00841 10.52 

0.01063 39.8 
-0.5 

0.01824 0.0 
0.307 0.01901 4.16 

0.02119 16.17 

0.05860 0.0 
0.531 0.05947 1.48 

0.06167 5.2 

tNumerica1 solution started with exact analytical values. 
$Starting solid temperature = analytical temperature- 

0.00001 and freezing front = X(~+O.OOOOl. 
$Starting solid temperature = analytical temperature- 

0.00004 and freezing front = X(V) + 0.00002. 

V and IR- I], there was good agreement between the 
temperatures calculated from equation (34) and the 
numerical scheme. 
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SOLUTIONS ANALYTIQUE ET NUMERIQUE D’UN PROBLEME DE SOLIDIFICATION 
PENETRANTE, A SYMETRIE RADIALE DANS UNE GEOMETRIE SPHERIQUE 

R&un&Une solution analytique rapide est obtenue en utilisant une technique nouvelle qui suppose des 
temp&ratures initiales fictives dans des extensions fictives des rggions rkelles. Ultirieurement, cette solution 
est comparte avec la solution numerique obtenue par diff&rences finies dans laquelle les points de la grille 
spatiale changent avec la position du front de solidification. Une petite erreur dans les valeurs initiales de 
la temptrature du solide et dans la position du front de solidification, don&es nicessaires pour initialiser 
le schkma numerique, peut conduire dans un temps court g une erreur considkrable sur la position du front 
de solidification. Nkanmoins les solutions analytique et num&ique sont en bon accord si le schema 
num&ique est initiali& avec les valeurs analytiques de la temptrature du solide et du front de solidification. 

ANALYTISCHE UND NUMERISCHE LdSUNGEN RADIALSYMMETRISCHER 
ERSTARRUNGSERSCHEINUNGEN IM INNEREN VON KUGELFdRMIGEN 

GEOMETRIEN 

Zusammenfassung-Man erhnlt eine analytische Kurzzeitliisung mit Hilfe einer neuen Technik, bei der 
fiktive Anfangstemperaturen in fiktiven Bereichen der betrachteten Regionen angenommen werden. Die 
Kurzzeitliisung wird splter mit der numerischen LBsung verglichen, die man durch das Finite-Differenzen- 
Schema erhllt, und bei der sich die Raumlage der Gitterpunkte mit der Position der Erstarrungs- 
front Indert. Schon geringfiigige Fehler bei den fiir den Start des numerischen Verfahrens notwendigen 
Anfangswerten fiir die Festkijrpertemperatur und Lage der Erstarrungsfront kijnnen fiir kurze Zeiten 
den Fehler bei der Ermittlung der Lage der Erstarrungsfront erheblich anwachsen lassen. Die ana- 
lytische und die numerische Liisung stimmen jedoch gut miteinander iiberein, wenn als Startwerte fiir 
das numerische Verfahren die analytischen Werte der Festkiirpertemperatur und der Erstarrungsfront 

verwendet werden. 

AHAJIATMgECKOE M 9klCJIEHHOE PEBIEHME PAAHAnbHO-CMMMETPM9HbIX 
BHYTPEHHHX 3A&4’-I 3ATBEPAEBAHHR &JIcI C@EPM9ECKMX TEJl 

k"OTP~YR----C nOMOUlbK) HOBOrO MeTOAa,npeAnOJIaralOmerO @KTHBHbIeTeMnepaTypbIHaHeKOTOpbIX 

&KTWBHbIX y9acrKax p%lJ'IbHbIX o6nacTei, nocTpoeH0 aHanaTwiecKoe pemeHae AJUI MaJIbIX BpMeH. 

flanee npoBeAeHocpaeHeHaepemeHsnc rticnemibIMpemeseebf,nony~eHHblbtcnpnMeHeHneM KoHeqHo- 

pa3HOCTHOfi CXCMbI,npOCTpaHCTBeHHaK CeTKa KOTOpOti H3MeHffeTCII C H3MeHeHlleM nOJ,OmeHBR +pOHTa 

3&,TBepAeBaH&U,. npl, 'fHC,IeHHbIX paCYeTaX AaXE He6onbmee nOlJ,emHOCTH B Ha'iaJIbHbIX 3HaYeHHIIX 

TeMnepaTypblIInOnOweHUK~pOHTa3aTBepAeBaHHKMOryTHaMaAbIXB~MeHaXnpuB~TBK3HaYuTeAb- 

HMM OmEi6KaM. OAHaKo cpaeHeHtie noKa3ano,sTo aHanaw9ecKoe n SHcnemfoe pemeHun xopomo cor- 

JIaCy,OTC,-,,eCJIH B YMCJ‘eHHbIX paCYeTaX HCIlOJIb3ylOTCK Ha'GWIbHbIe 3HaYeHHII B aHLUIATBWCKOM BAAe AJIK 


